Archive

Archive for the ‘Mathematics Journals’ Category

The status quo of math publishing

March 18, 2019 2 comments

We all like the status quo.  It’s one of my favorite statuses…  The status quo is usually excellent or at least good enough.  It’s just so tempting to do nothing at all that we tend to just keep it.  For years and years which turn into decades.  Until finally the time has come to debate it…

Some say the status quo on math publishing is unsustainable.  That the publishers are much too greedy, that we do all the work and pay twice, that we should boycott the most outrageous of these publishers, that the University of California, German, HungaryNorway and Swedish library systems recent decisions are a watershed moment calling for action, etc.  My own institution (UCLA) is actually the leader in the movement.  While I totally agree with the sentiment, I mostly disagree with the boycott(s) as currently practiced and other proposed measures.  It comes from a position of weakness and requires major changes to the status quo.

Having been thinking about this all for awhile, I am now very optimistic.  In fact, there is a way we can use our natural position of strength to achieve all the goals we want while keeping the status quo.  It may seem hard to believe, but with a few simple measures we can get there in a span of a few years.  This post is a long explanation of how and why we do this.

What IS the current status quo?

In mathematics, it’s pretty simple.  We, the mathematicians, do most of the work:  produce a decent looking .pdf file, perform a peer review on a largely volunteer basis (some editors do get paid occasionally), disseminate the results as best as we can, and lobby our libraries to buy the journal subscriptions.  The journals collect the copyright forms, make minor edits to the paper to conform to their favorite style, print papers on paper, mail them to the libraries, post the .pdf files on the internet accessible via library website, and charge libraries outrageous fees for these services.  They also have armies of managers, lawyers, shareholders, etc. to protect the status quo.

Is it all good or bad?  It’s mostly good, really.  We want all these basic services, just disagree on the price.  There is an old Russian Jewish proverb, that if a problem can be solved with money — it’s not a real problem but a business expense (here is a modern version).  So we should deal with predatory pricing as a business issue and not get emotional by boycotting selective journals or publishers.  We can argue for price decreases completely rationally, by showing that their product lost 90%, but not all its value, and that it’s in our common interest to devalue it, but not kill it.

Why keep the status quo?

This is easy.  We as a community tend to like our journals more than we hate them.  They compete for our papers.  We compete with each other to get published in best places.  This means we as a community know which journals are good, better or best in every area, or in the whole field of mathematics.  This means that each journal has composed the best editorial board it could.  It would be a waste to let this naturally formed structures go.

Now, in the past I strongly criticized top journals, the whole publishing industry, made fun of it, and more recently presented an ethical code of conduct for all journals.   Yet it’s clear that the cost of complete destruction of existing journal nomenclature is too high to pay and thus unlikely to happen.

Why changing the status quo is impractical?

Consider the alternatives.  Yes, the editorial board resignations do happen, most recently in the Journal of Algebraic Combinatorics (JACO) which resigned in mass to form a journal named Algebraic Combinatorics (ALCO) But despite laudations, the original journal exists and doing fine or at least ok.  To my dismay and mild disbelief, the new Editorial Board of JACO has some well-known and wildly respected people.  Arguably, this is not the outcome the resigners aimed for (for the record, I published twice in JACO and recently had a paper accepted by ALCO).

Now, at first, starting new journals may seems like a great idea.  Unfortunately, by the conservative nature of academia they always struggle to get off the ground.  Some survive, such as EJC or EJP, have been pioneers in the area, but others are not doing so well.  The fine print is also an issue — the much hyped Pi and Sigma charge $1000 per article for “processing”, whatever that entails.   Terry Tao wrote that these journals suggest “alternatives to the status quo”.  Maybe.  But how exactly is that an improvement?  (Again, for the record, I published in both EJC, EJP, and recently in Sigma.  No, I didn’t pay, but let me stay on point here — that story can wait for another time.)

Other alternatives are even less effective.  Boycotting selective publishers gives a free reign to others to charge a lot, at the time when we need a systemic change.  I believe that it gives all but the worst publishers the cover they need to survive, while the worst already have enough power to survive and remain in the lead.  There is a long argument here I am trying to avoid.  Having had it with Mark Wilson, I know it would overwhelm this post.  Let me not rebut it thoroughly point-by-point, but present my own vision.

What can we do?

Boycott them all!  I mean all non-free journals, at all times, at all cost.  By that I don’t mean everyone should avoid submission, refereeing, being on the editorial board.  Not at all, rather opposite.  Please do NOT boycott anyone specifically, proceed with your work, keep the status quo.

What I mean is this.  Boycott all non-free journals as a consumer!  Do NOT download papers from journal websites.  I will give detailed suggestions below, after I explained my rationale.  In short, every time you download a paper from the journal website it gives publishers leverage to claim they are indispensable, and gives libraries the fear of faculty revolt if they unsubscribe.  They (both the publishers and the libraries) have no idea how little we need the paid journal websites.

Detailed advice on how to boycott all math journal publishers

Follow the following simple rules.  On your side as an author, make every(!) paper you ever wrote freely accessible.  Not just the latest – all of them!  Put them on the arXiv, viXra, your own website, or anywhere you like as long as the search engines can find them.  If you don’t know how, ask for help.  If you can read this WP blog post, you can also post your papers on some WP site.  If you are afraid of the copyright, snap out of it!  I do this routinely, of course.  Many greats have also done this for all their papers, e.g. Noga Alon and Richard Stanley.  Famously, all papers by Paul Erdős are online.  So my message for all of you reading this: if you don’t have all your papers free online, go ahead, just post them all!  Yes, that means right now!  Stop reading and come back when you are done.

Now, for reading papers the rules are more complicated.   Every time you need to download an article, don’t go to MathSciNet.  Instead, google it first.  Google Scholar usually gives you multiple options on the download location.  Choose the one in the arXiv or author’s website.  Done.

If you fail, but feel the paper could be available from some nefarious copyright violating websites, consider using Yandex, DuckDuckGo, or other search engines which are less concerned about the copyright.

Now, suppose the only location is the journal website.  Often, this happens when the paper is old or old-ish, i.e. outside the 4 year sliding window for Elsevier.  As far as I am concerned, this part of the publisher is “free” since anyone in the world can download it without charge.  Make sure you download the paper without informing your campus library.  This is easy off campus — use any browser without remote access (VPN).  On campus, use a browser masking your ip address, i.e. the Opera.

Now, suppose nothing works.  Say, the paper is recent but inaccessible for free.  Then email to the authors and request the file of paper.  Shame them into putting the paper online while you are at it.   Forward them this blog post, perhaps.

Suppose now the paper is inaccessible for free, but the authors are non-responsive and unlikely to ever make the paper available.  Well, ok — download it from the journal website then via your library.  But then be a mensch.  Post the paper online.  Yes, in violation of copyright.  Yes, other people already do it.  Yes, everyone is downloading them and would be grateful.  No, they won’t fight us all.

Finally, suppose you create a course website.  Make sure all or at least most of your links are to free version of the articles.  Download them all and repost them on your course website so the students can bypass the library redirect.  Every bit helps.

Why would this work?  I.  Shaming is powerful.

Well, in mathematics shaming is widespread and actually works except in some extreme cases.  It’s routine, in fact, to shame authors for not filling gaps in their proofs, for not acknowledging priority, or for not retracting incorrect papers (when the authors refuse to do it, the journals can also be shamed).  Sometimes the shaming doesn’t work.  Here is my own example of shaming fail (rather extreme, unfortunately), turned shaming success on pages of this blog.

More broadly, public shaming is one of the key instruments in the 21st century.  Mathbabe (who is writing a book about shaming) notably shamed Mochizuki for not traveling around to defend his papers.   Harron famously shamed white cis men for working in academia.  Again, maybe not in all cases, but in general public shaming works rather well, and there is a lot of shaming happening everywhere.  

So think about it — what if we can shame every working mathematician into posting all their papers online?  We can then convince libraries that we don’t need to renew all our math journal subscriptions since we can function perfectly well without them.  Now, we would still want the journal to function, but are prepared to spend maybe 10-15% of the prices that Springer and Elsevier currently charge.  Just don’t renew the contract otherwise.  Use the savings to hire more postdocs, new faculty, give students more scholarships to travel to conferences, make new Summer research opportunities, etc.

Why would this work?  II.  Personal perspective.

About a year ago I bought a new laptop and decided to follow some of the rules above as an experiment.  The results were surprisingly good.  I had to download some old non-free papers from  publisher sites maybe about 4-5 times a month.  I went to the library about once every couple of months.  For new papers, I emailed the authors maybe the total of about once every three months, getting the paper every time.  I feel I could have emailed more often, asking for old papers as well.

Only occasionally (maybe once a month) I had to resort to overseas paper depositaries, all out of laziness — it’s faster than walking to the library.  In summary — it’s already easy to be a research mathematician without paying for journals.  In the future, it will get even easier.

Why would this work?  III.  Librarian perspective.

Imagine you are a head librarian responsible for journal contracts and purchasing.   You have access to the download data and you realize that many math journals continue to be useful and even popular.  The publishers bring you a similar or possibly more inflated date showing their products in best light.  Right now you have no evidence the journals are largely useless are worried about backslash which would happen if you accidentally cut down on popular journals.  So you renew just about everything that your library has always been subscribing and skip on subscribing to new journals unless you get special requests for the faculty that you should.

Now imagine that in 2-3 years your data suggests rapidly decreasing popularity of the journals.  You make a projection that the downloads will decrease by a factor of 10 within a few more years.  That frees you from worrying about cancelling subscriptions and gives you strong leverage in negotiating.  Ironically that also helps you keeps the status quo — the publishers slash their price but you can keep most of the subscriptions.

Why would this work?  IV.  Historical perspective.

The history is full of hard fought battles which were made obsolete by cultural and technological changes.  The examples include the “war of the currents“, the “war” of three competing NYC subway systems, same with multiple US railroads, the “long-distance price war“, the “browser war” and the “search engine war“.  They were all very different and resolved in many different ways, but have two things in common — they were ruthless at the time, and nobody cares anymore.  Even the airlines keep slashing prices, making services indistinguishably awful to the point of becoming near-utilities like electric and gas companies.

The same will happen to the journal publishing empires.  In fact, the necessary technology has been available for awhile — it’s the culture that needs to change.  Eventually all existing print journals will become glorified versions of arXiv overlay publications with substantially scaled down stuff and technical production.  Not by choice, of course — there is just no money in it.  Just like the airline travel — service will get worse, but much cheaper.

The publishers will continue to send print copies of journals to a few dozen libraries worldwide which will be immediately put into off-campus underground bunker-like storages as an anti-apocalyptic measure, and since the reader’s demand will be close to nonexistent.  They will remain profitable by cutting cost everywhere since apparently this is all we really care about.

The publishers already know that they are doomed, they just want to prolong the agony and extract as much rent as they can before turning into public utilities.  This is why the Elsevier refuses to budge with the UC and other systems.  They realize that publicly slashing prices for one customer today will lead to an avalanche of similar demands tomorrow, so they would rather forgo a few customers than start a revolution which would decimate their journal value in 5 years (duration of the Elsevier contract).

None of this is new, of course.  Odlyzko described it all back in 1997, in a remarkably prescient yet depressing article.  Unfortunately, we have been moving in the wrong direction.  Gowers is right that publishers cannot be shamed, but his efforts to shame people into boycotting Elsevier may be misplaced as it continues going strong.  The shaming did lead to the continuing conversation and the above mentioned four year sliding window which is the key to my proposal.

What’s happening now?  Why is Elsevier not budging?

As everyone who ever asked for a discount knows, you should do this privately, not publicly.  Very quietly slashing the prices by a factor of 2, then trying to play the same trick again in 5 years would have been smarter and satisfied everybody.  To further help Elsevier hide the losses from shareholders and general public, the library could have used some bureaucratic gimmicks like paying the same for many journals but getting new books for free or something like that.  This would further confuse everybody except professional negotiators on behalf of other library systems, thus still helping to push the prices down.

But the UC system wanted to lead a revolution with their public demands, so here we are, breaking the status quo for no real reason.  There are no winners here.  Even my aunt Bella from Odessa who used to take me regularly to Privoz Market to watch her bargain, could have told you that’s exactly what’s going to happen…

Again, the result is bad for everybody — the Elsevier would have been happier to get some money — less than the usual amount, but better than nothing given the trivial marginal costs.  At the same time, we at UCLA still need the occasional journal access while in the difficult transition period.

AMS, please step up!

There is one more bad actor in the whole publishing drama whose role needs to change.  I am speaking about the AMS, which is essentially a giant publishing house with an army of volunteers and a side business of organizing professional meetings.  Let’s looks at the numbers, the 2016 annual report (for some reason the last one available).  On p.12 we read: of the $31.8 mil operating revenue dues make up about 8%, meetings 4%, while publishing a whopping 68%.  No wonder the AMS is not pushing for changes in current journal pay structure — they are conflicted to the point of being complicit in preserving existing prices.

But let’s dig a little deeper.  On p.16 we see that the journals are fantastically profitable!  They raise $5.2 mil with $1.5 mil in operating expenses, a 247% profit margin.  With margins like that who wants to rock the boat?  Compare this with next item — books.  The AMS made $4.1 mil while spent $3.6 mil.  That’s a healthy 14% profit margin.  Nice, but nothing to write home about.  By its nature, the book market is highly competitive as libraries and individuals have option to buy them or not on a per title basis.  Thus, the competition.

If you think the AMS prices are lower than of other publishers, that’s probably right.  This very dated page by Kirby is helpful.  For example, in 1996, the PTRF (Springer) charged $2100, the Advances (Academic Press, now Elsevier) $1326, the Annals (Princeton Univ. Press) $200, while JAMS only $174.  Still…

What should be done?  Ideally, the AMS should sell its journal business to some university press and invest long-term the sale profits.  That would free it to pursue the widely popular efforts towards free publishing.  In reality that’s unlikely to happen, so perhaps some sort of “Chinese wall” separating journal publishing and the AMS political activities.  This “wall” might already exist, I wouldn’t know.  I am open to suggestions.  Either way, I think the AMS members should brace themselves for the future where the AMS has a little less money.  But since the MathSciNet alone brings 1/3 of the revenue, and other successful products like MathJobs are also money makers, I think the AMS will be fine.

I do have one pet peeve.  The MathSciNet, which is a good product otherwise, should have a “web search” button next to the “article” button.  The latter automatically takes you to the journal website, while the former would search the article on Google Scholar (or Microsoft Academic, I suppose, let the people choose a default).  This would help people circumvent the publishers by cutting down on clicks.

What gives?

I have always been a non-believer in boycotts of specific publishers, and I feel the history proved me more right than wrong.  People tend to avoid boycotts when they have significant cost, and without the overwhelming participation boycotts simply don’t work.  Asking people not to submit or referee for the leading journals in their fields is like asking to voluntarily pay higher taxes.  Some do this, of course, but most don’t, even those who generally agree with higher taxes as a good public policy.

In fact, I always thought we need some kind of one-line bill by the US Congress requiring all research made at every publicly funded university being available for free online.  In my conspiratorial imagination, the AMS being a large publisher refused to bring this up in its lobbying efforts, thus nothing ever happened.  While I still think this bill is a good idea, I no longer think it’s a necessary step.

Now I am finally optimistic that the boycott I am proposing is going to succeed.  The (nearly) free publishing is coming!  Please spread the word, everybody!

UPDATE (March 19, 2019):  Mark Wilson has a blog post commenting and clarifying ALCO vs. JACO situation.

Advertisements

What we’ve got here is failure to communicate

September 14, 2018 21 comments

Here is a lengthy and somewhat detached followup discussion on the very unfortunate Hill’s affair, which is much commented by Tim Gowers, Terry Tao and many others (see e.g. links and comments on their blog posts).  While many seem to be universally distraught by the story and there are some clear disagreements on what happened, there are even deeper disagreements on what should have happened.  The latter question is the subject of this blog post.

Note:  Below we discuss both the ethical and moral aspects of the issue.  Be patient before commenting your disagreements until you finish the reading — there is a lengthy disclaimer at the end.

Review process:

  1. When the paper is submitted there is a very important email acknowledging receipt of the submission.  Large publishers have systems send such emails automatically.  Until this email is received, the paper is not considered submitted.  For example, it is not unethical for the author to get tired of waiting to hear from the journal and submit elsewhere instead.  If the journal later comes back and says “sorry for the wait, here are the reports”, the author should just inform the journal that the paper is under consideration elsewhere and should be considered withdrawn (this happens sometimes).
  2. Similarly, there is a very important email acknowledging acceptance of the submission.  Until this point the editors ethically can do as they please, even reject the paper with multiple positive reports.  Morality of the latter is in the eye of the beholder (cf. here), but there are absolutely no ethical issues here unless the editor violated the rules set up by the journal.  In principle, editors can and do make decisions based on informal discussions with others, this is totally fine.
  3. If a journal withdraws acceptance after the formal acceptance email is sent, this is potentially a serious violation of ethical standards.  Major exception: this is not unethical if the journal follows a certain procedural steps (see the section below).  This should not be done except for some extreme circumstances, such as last minute discovery of a counterexample to the main result which the author refuses to recognize and thus voluntarily withdraw the paper.   It is not immoral since until the actual publication no actual harm is done to the author.
  4. The next key event is publication of the article, whether online of in print, usually/often coupled with the transfer of copyright.  If the journal officially “withdraws acceptance” after the paper is published without deleting the paper, this is not immoral, but depends on the procedural steps as in the previous item.
  5. If a journal deletes the paper after the publication, online or otherwise, this is a gross violation of both moral and ethical standards.  The journals which do that should be ostracized regardless their reasoning for this act.  Major exception: the journal has legal reasoning, e.g. the author violated copyright laws by lifting from another published article as in the Dănuț Marcu case (see below).

Withdrawal process:

  1.  As we mentioned earlier, the withdrawal of accepted or published article should be extremely rare, only in extreme circumstances such as a major math error for a not-yet-published article or a gross ethical violation by the author or by the handling editor of a published article.
  2. For a published article with a major math error or which was later discovered to be known, the journal should not withdraw the article but instead work with the author to publish an erratum or an acknowledgement of priority.  Here an erratum can be either fixing/modifying the results, or a complete withdrawal of the main claim.  An example of the latter is an erratum by Daniel Biss.  Note that the journal can in principle publish a note authored by someone else (e.g. this note by Mnёv in the case of Biss), but this should be treated as a separate article and not a substitute for an erratum by the author.  A good example of acknowledgement of priority is this one by Lagarias and Moews.
  3. To withdraw the disputed article the journal’s editorial board should either follow the procedure set up by the publisher or set up a procedure for an ad hoc committee which would look into the paper and the submission circumstances.  Again, if the paper is already published, only non-math issues such as ethical violations by the author, referee(s) and/or handling editor can be taken into consideration.
  4. Typically, a decision to form an ad hoc committee or call for a full editorial vote should me made by the editor in chief, at the request of (usually at least two) members of the editorial board.  It is totally fine to have a vote by the whole editorial board, even immediately after the issue was raised, but the threshold for successful withdrawal motion should be set by the publisher or agreed by the editorial board before the particular issue arises.  Otherwise, the decision needs to be made by consensus with both the handling editor and the editor in chief abstaining from the committee discussion and the vote.
  5. Examples of the various ways the journals act on withdrawing/retracting published papers can be found in the case of notorious plagiarist Dănuț Marcu.  For example, Geometria Dedicata decided not to remove Marcu’s paper but simply issued a statement, which I personally find insufficient as it is not a retraction in any formal sense.  Alternatively, SUBBI‘s apology is very radical yet the reasoning is completely unexplained. Finally, Soifer’s statement on behalf of Geombinatorics is very thorough, well narrated and quite decisive, but suffers from authoritarian decision making.
  6. In summary, if the process is set up in advance and is carefully followed, the withdrawal/retraction of accepted or published papers can be both appropriate and even desirable.  But when the process is not followed, such action can be considered unethical and should be avoided whenever possible.

Author’s rights and obligations:

  1. The author can withdraw the paper at any moment until publication.  It is also author’s right not to agree to any discussion or rejoinder.  The journal, of course, is under no obligation to ask the author’s permission to publish a refutation of the article.
  2. If the acceptance is issued, the author has every right not go along with the proposed quiet withdrawal of the article.  In this case the author might want to consider complaining to the editor in chief or the publisher making the case that the editors are acting inappropriately.
  3. Until acceptance is issued, the author should not publicly disclose the journal where the paper is submitted, since doing so constitutes a (very minor) moral violation.  Many would disagree on this point, so let me elaborate.  Informing the public of the journal submission is tempting people in who are competition or who have a negative opinion of the paper to interfere with the peer review process.  While virtually all people virtually all the time will act honorably and not contact the journal, such temptation is undesirable and easily avoidable.
  4. As soon as the acceptance or publication is issued, the author should make this public immediately, by the similar reasoning of avoiding temptation by the third parties (of different kind).

Third party outreach:

  1.  If the paper is accepted but not yet published, reaching out to the editor in chief by a third party requesting to publish a rebuttal of some kind is totally fine.  Asking to withdraw the paper for mathematical reasons is also fine, but should provide a clear formal math reasoning as in “Lemma 3 is false because…”  The editor then has a choice but not an obligation to trigger the withdrawal process.
  2. Asking to withdraw the not-yet-published paper without providing math reasoning, but saying something like “this author is a crank” or “publishing this paper will do bad for your reputation” is akin to bullying and thus a minor ethical violation.  The reason it’s minor is because it is journal’s obligations to ignore such emails.  Journal acting on such an email with rumors or unverified facts is an ethical violation on its own.
  3. If a third party learns about a publicly available paper which may or may not be an accepted submission with which they disagree for math or other reason, it it ethical to contact the author directly.  In fact, in case of math issues this is highly desirable.
  4. If a third party learns about a paper submission to a journal without being contacted to review it, and the paper is not yet accepted, then contacting the journal is a strong ethical violation.  Typically, the journal where the paper is submitted it not known to public, so the third party is acting on the information it should not have.  Every such email can be considered as an act of bullying no matter the content.
  5. In an unlikely case everything is as above but the journal’s name where the paper is submitted is publicly available, the third party can contact the journal.  Whether this is ethical or not depends on the wording of the email.  I can imagine some plausible circumstances when e.g. the third party knows that the author is Dănuț Marcu mentioned earlier.  In these rare cases the third party should make every effort to CC the email to everyone even remotely involved, such as all authors of the paper, the publisher, the editor in chief, and perhaps all members of the editorial board.  If the third party feels constrained by the necessity of this broad outreach then the case is not egregious enough, and such email is still bullying and thus unethical.
  6. Once the paper is published anyone can contact the journal for any reason since there is little can be done by the journal beyond what’s described above.  For example, on two different occasions I wrote to journals pointing out that their recently published results are not new and asking them to inform the authors while keeping my anonymity.  Both editors said they would.  One of the journals later published an acknowledgement of retribution.  The other did not.

Editor’s rights and obligations:

  1. Editors have every right to encourage submissions of papers to the journal, and in fact it’s part of their job.  It is absolutely ethical to encourage submissions from colleagues, close relatives, political friends, etc.  The publisher should set up a clear and unobtrusive conflict of interest directive, so if the editor is too close to the author or the subject he or she should transfer the paper to the editor in chief who will chose a different handling editor.
  2. The journal should have a clear scope worked out by the publisher in cooperation with the editorial board.  If the paper is outside of the scope it should be rejected regardless of its mathematical merit.  When I was an editor of Discrete Mathematics, I would reject some “proofs” of the Goldbach conjecture and similar results based on that reasoning.  If the paper prompts the journal to re-evaluate its scope, it’s fine, but the discussion should involve the whole editorial board and irrespective of the paper in question.  Presumably, some editors would not want to continue being on the board if the journal starts changing direction.
  3. If the accepted but not yet published paper seems to fall outside of the journal’s scope, other editors can request the editor in chief to initiate the withdrawal process discussed above.  The wording of request is crucial here – if the issue is neither the the scope nor the major math errors, but rather the weakness of results, then this is inappropriate.
  4. If the issue is the possibly unethical behavior of the handling editor, then the withdrawal may or may not be appropriate depending on the behavior, I suppose.  But if the author was acting ethically and the unethical behavior is solely by the handling editor, I say proceed to publish the paper and then issue a formal retraction while keeping the paper published, of course.

Complaining to universities:

  1. While perfectly ethical, contacting the university administration to initiate a formal investigation of a faculty member is an extremely serious step which should be avoided if at all possible.  Except for the egregious cases of verifiable formal violations of the university code of conduct (such as academic dishonesty), this action in itself is akin to bullying and thus immoral.
  2. The code of conduct is usually available on the university website – the complainer would do well to consult it before filing a complaint.  In particular, the complaint would typically be addressed to the university senate committee on faculty affairs, the office of academic integrity and/or dean of the faculty.  Whether the university president is in math or even the same area is completely irrelevant as the president plays no role in the working of the committee.  In fact, when this is the case, the president is likely to recuse herself or himself from any part of the investigation and severe any contacts with the complainer to avoid appearance of impropriety.
  3. When a formal complaint is received, the university is usually compelled to initiate an investigation and set up an ad hoc subcommittee of the faculty senate which thoroughly examines the issue.  Faculty’s tenure and life being is on the line.  They can be asked to retain legal representation and can be prohibited from discussing the matters of the case with outsiders without university lawyers and/or PR people signing on every communication.  Once the investigation is complete the findings are kept private except for administrative decisions such as firing, suspension, etc.  In summary, if the author seeks information rather than punishment, this is counterproductive.

Complaining to institutions:

  1. I don’t know what to make of the alleged NSF request, which could be ethical and appropriate, or even common.   Then so would be complaining to the NSF on a publicly available research product supported by the agency.  The issue is the opposite to that of the journals — the NSF is a part of the the Federal Government and is thus subject to a large number of regulations and code of conduct rules.  These can explain its request.  We in mathematics are rather fortunate that our theorems tend to lack any political implications in the real world.  But perhaps researchers in Political Science and Sociology have different experiences with granting agencies, I wouldn’t know.
  2. Contacting the AMS can in fact be rather useful, even though it currently has no way to conduct an appropriate investigation.  Put bluntly, all parties in the conflict can simply ignore AMS’s request for documents.  But maybe this should change in the future.  I am not a member of the AMS so have no standing in telling it what to do, but I do have some thoughts on the subject.  I will try to write them up at some point.

Public discourse:

  1. Many commenters on the case opined that while deleting a published paper is bad (I am paraphrasing), but the paper is also bad for whatever reason (politics, lack of strong math, editor’s behavior, being out of scope, etc.)  This is very unfortunate.  Let me explain.
  2. Of course, discussing math in the paper is perfectly ethical: academics can discuss any paper they like, this can be considered as part of the job.  Same with discussing the scope of the paper and the verifiable journal and other party actions.
  3. Publicly discussing personalities and motivation of the editors publishing or non-publishing, third parties contacting editors in chief, etc. is arguably unethical and can be perceived as borderline bullying.  It is also of questionable morality as no complete set of facts are known.
  4. So while making a judgement on the journal conduct next to the judgement on the math in the paper is ethical, it seems somewhat immoral to me.  When you write “yes, the journals’ actions are disturbing, but the math in the paper is poor” we all understand that while formally these are two separate discussions, the negative judgement in the second part can provide an excuse for misbehavior in the first part.  So here is my new rule:  If you would not be discussing the math in the paper without the pretext of its submission history, you should not be discussing it at all. 

In summary:

I argue that for all issues related to submissions, withdrawal, etc. there is a well understood ethical code of conduct.  Decisions on who behaved unethically hinge on formal details of each case.  Until these formalities are clarified, making judgements is both premature and unhelpful.

Part of the problem is the lack of clarity about procedural rules by the journals, as discussed above.  While large institutions such as major universities and long established journal publishers do have such rules set up, most journals tend not to disclose them, unfortunately.  Even worse, many new, independent and/or electronic journals have no such rules at all.  In such environment we are reduced to saying that this is all a failure to communicate.

Lengthy disclaimer:

  1. I have no special knowledge of what actually happened to Hill’s submission.  I outlined what I think should have happened in different scenarios if all participants acted morally and ethically (there are no legal issues here that I am aware of).  I am not trying to blame anyone and in fact, it is possible that none of these theoretical scenarios are applicable.  Yet I do think such a general discussion is useful as it distills the arguments.
  2. I have not read Hill’s paper as I think its content is irrelevant to the discussion and since I am deeply uninterested in the subject.  I am, however, interested in mathematical publishing and all academia related matters.
  3. What’s ethical and what’s moral are not exactly the same.  As far as this post is concerned, ethical issues cover all math research/university/academic related stuff.  Moral issues are more personal and community related, thus less universal perhaps.  In other words, I am presenting my own POV everywhere here.
  4. To give specific examples of the difference, if you stole your officemate’s lunch you acted immorally.  If you submitted your paper to two journals simultaneously you acted unethically.  And if you published a paper based on your officemate’s ideas she told you in secret, you acted both immorally and unethically.  Note that in the last example I am making a moral judgement since I equate this with stealing, while others might think it’s just unethical but morally ok.
  5. There is very little black & white about immoral/unethical acts, and one always needs to assign a relative measure of the perceived violation.  This is similar to criminal acts, which can be a misdemeanor, a gross misdemeanor, a felony, etc.

 

How NOT to reference papers

September 12, 2014 Leave a comment

In this post, I am going to tell a story of one paper and its authors which misrepresented my paper and refused to acknowledge the fact. It’s also a story about the section editor of Journal of Algebra which published that paper and then ignored my complaints. In my usual wordy manner, I do not get to the point right away, and cover some basics first. If you want to read only the juicy parts, just scroll down…

What’s the deal with the references?

First, let’s talk about something obvious. Why do we do what we do? I mean, why do we study for many years how to do research in mathematics, read dozens or hundreds of papers, think long thoughts until we eventually figure out a good question. We then work hard, trial-and-error, to eventually figure out a solution. Sometimes we do this in a matter of hours and sometimes it takes years, but we persevere. Then write up a solution, submit to a journal, sometimes get rejected (who knew this was solved 20 years ago?), and sometimes sent for revision with various lemmas to fix. We then revise the paper, and if all goes well it gets accepted. And published. Eventually.

So, why do we do all of that? For the opportunity to teach at a good university and derive a reasonable salary? Yes, sure, a to some degree. But mostly because we like doing this. And we like having our work appreciated. We like going to conferences to present it. We like it when people read our paper and enjoy it or simply find it useful. We like it when our little papers form building stones towards bigger work, perhaps eventually helping to resolve an old open problem. All this gives us purpose, a sense of accomplishment, a “social capital” if you like fancy terms.

But all this hinges on a tiny little thing we call citations. They tend to come at the end, sometimes footnote size and is the primary vehicle for our goal. If we are uncited, ignored, all hope is lost. But even if we are cited, it matters how our work is cited. In what context was it referenced is critically important. Sometimes our results are substantially used in the proof, those are GOOD references.

Yet often our papers are mentioned in a sentence “See [..] for the related results.” Sometimes this happens out of politeness or collegiality between authors, sometimes for the benefit of the reader (it can be hard navigating a field), and sometimes the authors are being self-serving (as in “look, all these cool people wrote good papers on this subject, so my work must also be good/important/publishable”). There are NEUTRAL references – they might help others, but not the authors.

Finally, there are BAD references. Those which refer derogatively to your work, or simply as a low benchmark which the new paper easily improved. Those which say “our bound is terribly weak, but it’s certainly better than Pak’s.” But the WORST references are those which misstate what you did, which diminish and undermine your work.

So for anyone out there who thinks the references are in the back because they are not so important – think again. They are of utmost importance – they are what makes the system work.

The story of our paper

This was in June 1997. My High School friend Sergey Bratus and I had an idea of recognizing the symmetric group Sn using the Goldbach conjecture. The idea was nice and the algorithm was short and worked really fast in practice. We quickly typed it up and submitted to the Journal of Symbolic Computations in September 1997. The journal gave us a lot of grief. First, they refused to seriously consider it since the Goldbach conjecture in referee’s words is “not like the Riemann hypothesis“, so we could not use it. Never mind that it was checked for n<1014, covering all possible values where such algorithm could possibly be useful. So we rewrote the paper by adding a variation based on the ternary Goldbach conjecture which was known for large enough values (and now proved in full).

The paper had no errors, resolved an open problem, but the referees were unhappy. One of them requested we change the algorithm to also work for the alternating group. We did. In the next round the same or another requested we cover the case of unknown n. We did. In the next round one referee requested we make a new implementation of the algorithm, now in GAP and report the results. We did. Clearly, the referees did not want our paper to get published, but did not know how to say it. Yet we persevered. After 4 back and forth revisions the paper more than doubled in size (completely unnecessarily). This took two years, almost to the day, but the paper did get accepted and published. Within a year or two, it became a standard routine in both GAP and MAGMA libraries.

[0] Sergey Bratus and Igor Pak, Fast constructive recognition of a black box group isomorphic to Sn or An using Goldbach’s Conjecture, J. Symbolic Comput. 29 (2000), 33–57.

Until a few days ago I never knew what was the problem the referees had with our paper. Why did a short, correct and elegant paper need to become long to include cumbersome extensions of the original material for the journal to accept it? I was simply too inexperienced to know that this is not the difference in culture (CS vs. math). Read on to find out what I now realized.

Our competition

After we wrote our paper, submitted and publicized on our websites and various conferences, I started noticing strange things. In papers after papers in Computational Group Theory, roughly a half would not reference our paper, but would cite another paper by 5 people in the field which apparently was doing the same or similar things. I recall I wrote to the authors of this competitive paper, but they wrote back that the paper is not written yet. To say I was annoyed was to understate the feeling.

In one notable instance, I confronted Bill Kantor (by email) who helped us with good advice earlier. He gave an ICM talk on the subject and cited a competition paper but not ours, even though I personally showed him the submitted preprint of [0] back in 1997, and explained our algorithm. He replied that he did not recall whether we sent him the paper. I found and forwarded him my email to him with that paper. He replied that he probably never read the email. I forwarded him back his reply on my original email. Out of excuses, Kantor simply did not reply. You see, the calf can never beat the oak tree.

Eventually, the competition paper was published 3 years after our paper:

[1] Robert Beals, Charles Leedham-Green, Alice Niemeyer, Cheryl Praeger, Ákos Seress, A black-box group algorithm for recognizing finite symmetric and alternating groups. I, Trans. AMS 355 (2003), 2097–2113.

The paper claims that the sequel II by the same authors is forthcoming, but have yet to appear. It was supposed to cover the case of unknown n, which [0] was required to cover, but I guess the same rules do not apply to [1]. Or maybe JSC is more selective than TAMS, one never knows… The never-coming sequel II will later play a crucial part in our story.

Anyhow, it turns out, the final result in [1] is roughly the same as in [0]. Although the details are quite different, it wasn’t really worth the long wait. I quote from [1]:

The running time of constructive recognition in [0] is about the same.

The authors then show an incredible dexterity in an effort to claim that their result is better somehow, by finding minor points of differences between the algorithms and claiming their importance. For example, take look at this passage:

The paper [0] describes the case G = Sn, and sketches the necessary modifications for the case G = An. In this paper, we present a complete argument which works for both cases. The case G = An is more complicated, and it is the more important one in applications.

Let me untangle this. First, what’s more “important” in applications is never justified and no sources were cited. Second, this says that BLNPS either haven’t read [0] or are intentionally misleading, as the case of An there is essentially the same as Sn, and the timing is off by a constant. On the other hand, this suggests that [1] treats An in a substantively more complicated way than Sn. Shouldn’t that be an argument in favor of [0] over [1], not the other way around? I could go on with other similarly dubious claims.

The aftermath

From this point on, multiple papers either ignored [0] in favor of [1] or cited [0] pro forma, emphasizing [1] as the best result somehow. For example, the following paper with 3 out of 5 coauthors of [1] goes at length touting [1] and never even mentioned [0].

[2] Alice Niemeyer, Cheryl Praeger, Ákos Seress, Estimation Problems and Randomised Group Algorithms, Lecture Notes in Math. 2070 (2013), 35–82.

When I asked Niemeyer as to how this could have happened, she apologized and explained: “The chapter was written under great time pressure.”

For an example of a more egregious kind, consider this paper:

[3] Robert Beals, Charles Leedham-Green, Alice Niemeyer, Cheryl Praeger, Ákos Seress, Constructive recognition of finite alternating and symmetric groups acting as matrix groups on their natural permutation modules, J. Algebra 292 (2005), 4–46.

They unambiguously claim:

The asymptotically most efficient black-box recognition algorithm known for An and Sn is in [1].

Our paper [0] is not mentioned anywhere near, and cited pro forma for other reasons. But just two years earlier, the exact same 5 authors state in [1] that the timing is “about the same”. So, what has happened to our algorithm in the intervening two years? It slowed down? Or perhaps the one in [1] got faster? Or, more plausibly, BLNPS simply realized that they can get away with more misleading referencing at JOA, than TAMS would ever allow?

Again, I could go on with a dozen other examples of this phenomenon. But you get the idea…

My boiling point: the 2013 JOA paper

For years, I held my tongue, thinking that in the age of Google Scholar these self-serving passages are not fooling anybody, that anyone interested in the facts is just a couple of clicks away from our paper. But I was naive. This strategy of ignoring and undermining [0] eventually paid off in this paper:

[4] Sebastian Jambor, Martin Leuner, Alice Niemeyer, Wilhelm Plesken, Fast recognition of alternating groups of unknown degree, J. Algebra 392 (2013), 315–335.

The abstract says it all:

We present a constructive recognition algorithm to decide whether a given black-box group is isomorphic to an alternating or a symmetric group without prior knowledge of the degree. This eliminates the major gap in known algorithms, as they require the degree as additional input.

And just to drive the point home, here is the passage from the first paragraph in the introduction.

For the important infinite family of alternating groups, the present black-box algorithms [0], [1] can only test whether a given black-box group is isomorphic to an alternating or a symmetric group of a particular degree, provided as additional input to the algorithm.

Ugh… But wait, our paper [0] they are citing already HAS such a test! And it’s not like it is hidden in the paper somehow – Section 9 is titled “What to do if n is not known?” Are the authors JLNP blind, intentionally misleading or simply never read [0]? Or is it the “great time pressure” argument again? What could possible justify such outrageous error?

Well, I wrote to the JLNP but neither of them answered. Nor acknowledged our priority. Nor updated the arXiv posting to reflect the error. I don’t blame them – people without academic integrity simply don’t see the need for that.

My disastrous battle with JOA

Once I realized that JLNP are not interested in acknowledging our priority, I wrote to the Journal of Algebra asking “what can be done?” Here is a copy of my email. I did not request a correction, and was unbelievably surprised to hear the following from Gerhard Hiss, the Editor of the Section on Computational Algebra of the Journal of Algebra:

[..] the authors were indeed careless in this attribution.

In my opinion, the inaccuracies in the paper “Fast recognition of alternating groups of unknown degree” are not sufficiently serious to make it appropriate for the journal to publish a correction.

Although there is some reason for you to be mildly aggrieved, the correction you ask for appears to be inappropriate. This is also the judgment of the other editors of the Computational Algebra Section, who have been involved in this discussion.

I have talked to the authors of the paper Niemeyer et al. and they confirmed that the [sic.] did not intend to disregard your contributions to the matter.

Thus I very much regret this unpleasent [sic.] situation and I ask you, in particular with regard to the two young authors of the paper, to leave it at that.

This email left me floored. So, I was graciously permitted by the JOA to be “mildly aggrieved“, but not more? Basically, Hiss is saying that the answer to my question “What can be done?” is NOTHING. Really?? And I should stop asking for just treatment by the JOA out of “regard to the two young authors”? Are you serious??? It’s hard to know where to begin…

As often happened in such cases, an unpleasant email exchange ensued. In my complaint to Michel Broué, he responded that Gerhard Hiss is a “respectable man” and that I should search for justice elsewhere.

In all fairness to JOA, one editor did behave honorably. Derek Holt wrote to me directly. He admitted that he was the handling editor for [1]. He writes:

Although I did not referee the paper myself, I did read through it, and I really should have spotted the completely false statement in the paper that you had not described any algorithm for determining the degree n of An or Sn in your paper with Bratus. So I would like to apologise now to you and Bratus for not spotting that. I almost wrote to you back in January when this discussion first started, but I was dissuaded from doing so by the other editors involved in the discussion.

Let me parse this, just in case. Holt is the person who implemented the Bratus-Pak algorithm in Magma. Clearly, he read the paper. He admits the error and our priority, and says he wanted to admit it publicly but other unnamed editors stopped him. Now, what about this alleged unanimity of the editorial board? What am I missing? Ugh…

What really happened? My speculation, part I. The community.

As I understand it, the Computational Group Theory is small close-knit community which as a result has a pervasive groupthink. Here is a passage from Niemeyer email to me:

We would also like to take this opportunity to mention how we came about our algorithm. Charles Leedham-Green was visiting UWA in 1996 and he worked with us on a first version of the algorithm. I talked about that in Oberwolfach in mid 1997 (abstract on OW Web site).

The last part is true indeed. The workshop abstracts are here. Niemeyer’s abstract did not mention Leedham-Green nor anyone else she meant by “us” (from the context – Niemeyer and Praeger), but let’s not quibble. The 1996 date is somewhat more dubious. It is contradicted by Niemeyer and Prager, who themselves clarified the timeline in the talk they gave in Oberwolfach in mid 2001 (see the abstract here):

This work was initiated by intense discussions of the speakers and their colleagues at the Computational Groups Week at Oberwolfach in 1997.

Anyhow, we accept that both algorithms were obtained independently, in mid-1997. It’s just that we finished our paper [0] in 3 months, while it took BLNPS about 4 years until it was submitted in 2001.

Next quote from Niemeyer’s email:

So our work was independent of yours. We are more than happy to acknowledge that you and Sergey [Bratus] were the first to come up with a polynomial time algorithm to solve the problem [..].

The second statement is just not true in many ways, nor is this our grievance as we only claim that [0] has a practically superior and theoretically comparable algorithm to that in [1], so there is no reason at all to single out [1] over [0] as is commonly done in the field. In fact, here is a quote from [1] fully contradicting Niemeyer’s claim:

The first polynomial-time constructive recognition algorithm for symmetric and alternating groups was described by Beals and Babai.

Now, note that both Hiss, Holt, Kantor and all 5 authors BLNPS were at both the 1997 and the 2001 Oberwolfach workshops (neither Bratus nor I were invited). We believe that the whole community operates by “they made a stake on this problem” and “what hasn’t happened at Oberwolfach, hasn’t happened.” Such principles make it easier for members of the community to treat BLNPS as pioneers of this problem, and only reference them even though our paper was published before [1] was submitted. Of course, such attitudes also remove a competitive pressure to quickly write the paper – where else in Math and especially CS people take 4-5 years(!) to write a technically elementary paper? (this last part was true also for [0], which is why we could write it in under 3 months).

In 2012, Niemeyer decided to finally finish the long announced part II of [1]. She did not bother to check what’s in our paper [0]. Indeed, why should she – everyone in the community already “knows” that she is the original (co-)author of the idea, so [4] can also be written as if [0] never happened. Fortunately for her, she was correct on this point as neither the referees nor the handling editor, nor the section editor contradicted false statements right in the abstract and the introduction.

My speculation, part II. Why the JOA rebuke?

Let’s look at the timing. In the Fall 2012, Niemeyer visited Aachen. She started collaborating with Professor Plesken from RWTH Aachen and his two graduate students: Jambor and Leuner. The paper was submitted to JOA on December 21, 2012, and the published version lists affiliation of all but Jambor to be in Aachen (Jambor moved to Auckland, NZ before the publication).

Now, Gerhard Hiss is a Professor at RWTH Aachen, working in the field. To repeat, he is the Section Editor of JOA on Computational Algebra. Let me note that [4] was submitted to JOA three days before Christmas 2012, on the same day (according to a comment I received from Eamonn O’Brien from JOA editorial board), on which apparently Hiss and Niemeyer attended a department Christmas party.

My questions: is it fair for a section editor to be making a decision contesting results by a colleague (Plesken), two graduate students (Jambor and Leuner), and a friend (Niemeyer), all currently or recently from his department? Wouldn’t the immediate recusal by Editor Hiss and investigation by an independent editor be a more appropriate course of action under the circumstances? In fact, this is a general Elsevier guideline if I understand it correctly.

What now?

Well, I am at the end of the line on this issue. Public shaming is the only thing that can really work against groupthink. To spread the word, please LIKE this post, REPOST it, here on WP, on FB, on G+, forward it by email, or do wherever you think appropriate. Let’s make sure that whenever somebody googles these names, this post comes up on top of the search results.

P.S. Full disclosure: I have one paper in the Journal of Algebra, on an unrelated subject. Also, I am an editor of Discrete Mathematics, which together with JOA is owned by the same parent company Elsevier.

UPDATE (September 17, 2014): I am disallowing all comments on this post as some submitted comments were crude and/or offensive. I am however agreeing with some helpful criticism. Some claimed that I crossed the line with some personal speculations, so I removed a paragraph. Also, Eamonn O’Brien clarified for me the inner working of the JOA editorial board, so removed my incorrect speculations on that point. Neither are germane to my two main complaints: that [0] is repeatedly mistreated in the area, most notably in [4], and that Editor Hiss should have recused himself from handling my formal complaint on [4].

UPDATE (October 14, 2014): In the past month, over 11K people viewed this post (according to the WP stat tools). This is a simply astonishing number for an inactive blog. Thank you all for spreading the word, whether supportive or otherwise! Special thanks to those of you in the field, who wrote heartfelt emails, also some apologetic and some critical – this was all very helpful.