## How I chose Enumerative Combinatorics

Apologies for not writing anything for awhile. After Feb 24, the *math *part of the “*life and math*” slogan lost a bit of relevance, while the actual events were stupefying to the point when I had nothing to say about the *life *part. Now that the shock subsided, let me break the silence by telling an old personal story which is neither relevant to anything happening right now nor a lesson to anyone. Sometimes a story is just a story…

#### My field

As the readers of this blog know, I am a * Combinatorialist*. Not a “proud one”. Just “a combinatorialist”. To paraphrase a military slogan “there are many fields like this one, but this one is mine”. While I’ve been defending my field for years, writing about its struggles, and often defining it, it’s not because this field is more important than others. Rather, because it’s so frequently misunderstood.

In fact, I *have *worked in other (mostly adjacent) fields, but that was usually because I was curious. Curious what’s going on in other areas, curious if they had tools to help me with my problems. Curious if they had problems that could use my tools. I would go to seminars in other fields, read papers, travel to conferences, make friends. Occasionally this strategy paid off and I would publish something in another field. Much more often nothing ever came out of that. It was fun regardless.

Anyway, I wanted to work in combinatorics for as long as I can remember, since I was about 15 or so. There is something inherently discrete about the way I see the world, so much that having additional structure is just obstructing the view. Here is how Gian-Carlo Rota famously put it:

Combinatorics is an honest subject. […] You either have the right number or you haven’t. You get the feeling that the result you have discovered is forever, because it’s concrete. [

Los Alamos Science, 1985]

I agree. Also, I really like to count. When prompted, I always say “*I work in Combinatorics*” even if sometimes I really don’t. But in truth, the field is much too large and not unified, so when asked to be more specific (this rarely happens) I say “*Enumerative Combinatorics*“. What follows is a short story of how I made the choice.

#### Family vacation

When I was about 18, Andrey Zelevinsky (ז״ל) introduced me and Alex Postnikov to Israel Gelfand and asked what should we be reading if we want to do combinatorics. Unlike most leading mathematicians in Russia, Gelfand had a surprisingly positive view on the subject (see e.g. his quotes here). He suggested we both read Macdonald’s book, which was translated into Russian by Zelevinsky himself just a few years earlier. The book was extremely informative but dry as a fig and left little room for creativity. I read a large chunk of it and concluded that if this is what modern combinatorics looks like, I want to have nothing to do with it. Alex had a very different impression, I think.

Next year, my extended family decided to have a vacation on a Russian “river cruise”. I remember a small passenger boat which left Moscow river terminal, navigated a succession of small rivers until it reached Volga. From there, the boat had a smooth gliding all the way to the Caspian Sea. The vacation was about three weeks of a hot Summer torture with the only relief served by mouth-watering fresh watermelons.

What made it worse, there was absolutely nothing to see. Much of the way Volga is enormously wide, sometimes as wide as the English channel. Most of the time you couldn’t even see the river banks. The cities distinguished themselves only by an assortment of Lenin statues, but were unremarkable otherwise. Volgograd was an exception with its very impressive tallest statue in Europe, roughly as tall as the Statue of Liberty when combined with its pedestal. Impressive for sure, but not worth the trip. Long story short, the whole cruise vacation was dreadfully boring.

#### One good book can make a difference

While most of my relatives occupied themselves by reading crime novels or playing cards, I was reading a math book, the only book I brought with me. This was Stanley’s *Enumerative Combinatorics* (vol. 1) whose Russian translation came out just a few months earlier. So I read it cover-to-cover, but doing only the easiest exercises just to make sure I understand what’s going on. That book changed everything…

Midway through, when I was reading about linear extensions of posets in Ch. 3 with their obvious connections to *standard Young tableaux* and the hook-length formula (which I already knew by then), I had an idea. From Macdonald’s book, I remembered the *q*-analogue of #SYT via the “*charge*“, a statistics introduced by Lascoux and Schützenberger to give a combinatorial interpretation of *Kostka polynomials*, and which works even for skew Young diagram shapes. I figured that skew shapes are generic enough, and there should be a generalization of the charge to all posets. After several long days filled with some tedious calculations by hand, I came up with both the statement and the proof of the *q-*analogue of the number of linear extensions.

I wrote the proof neatly in my notebook with a clear intent to publish my “remarkable discovery”, and continued reading. In Ch. 4, all of a sudden, I read the “*P-partition theory*” that I just invented by myself. It came with various applications and connections to other problems, and was presented so well, much nicer than I would have!

After some extreme disappointment, I learned from the notes that the P-partition theory was a large portion of Stanley’s own Ph.D. thesis, which he wrote *before I was born*. For a few hours, I did nothing but meditate, staring at the vast water surrounding me and ignoring my relatives who couldn’t care less what I was doing anyway. I was trying to think if there is a lesson in this fiasco.

It pays to be positive and self-assure, I suppose, in a way that only a teenager can be. That day I concluded that I am clearly doing something right, definitely smarter than everyone else even if born a little too late. More importantly, I figured that Enumerative Combinatorics done “Stanley-style” is really the right area for me…

#### Epilogue

I stopped thinking that I am smarter than everyone else within weeks, as soon as I learned more math. I no longer believe I was born too late. I did end up doing a lot of Enumerative Combinatorics. Much later I became Richard Stanley’s postdoc for a short time and a colleague at MIT for a long time. Even now, I continue writing papers on the numbers of linear extensions and standard Young tableaux. Occasionally, I also discuss their *q-*analogues (like in my most recent paper). I still care and it’s still the right area for me…

Some years later I realized that historically, the “charge” and Stanley’s q-statistics were not independent in a sense that both are generalizations of the *major index* by Percy MacMahon. In his revision of vol. 1, Stanley moved the P-partition theory up to Ch. 3, where it belongs IMO. In 2001, he received the Steele’s Prize for Mathematical Exposition for the book that changed everything…

Reblogged this on Combinatorics and more and commented:

Another great post by Igor Pak