Archive

Posts Tagged ‘Wikipedia’

The problem with combinatorics textbooks

July 3, 2021 Leave a comment

Every now and then I think about writing a graduate textbook in Combinatorics, based on some topics courses I have taught. I scan my extensive lecture notes, think about how much time it would take, and whether there is even a demand for this kind of effort. Five minutes later I would always remember that YOLO, deeply exhale and won’t think about it for a while.

What’s wrong with Combinatorics?

To illustrate the difficulty, let me begin with two quotes which contradict each other in the most illuminating way. First, from the Foreword by Richard Stanley on (his former student) Miklós Bóna’s “A Walk Through Combinatorics” textbook:

The subject of combinatorics is so vast that the author of a textbook faces a difficult decision as to what topics to include. There is no more-or-less canonical corpus as in such other subjects as number theory and complex variable theory. [here]

Second, from the Preface by Kyle Petersen (and Stanley’s academic descendant) in his elegant “Inquiry-Based Enumerative Combinatorics” textbook:

Combinatorics is a very broad subject, so the difficulty in writing about the subject is not what to include, but rather what to exclude. Which hundred problems should we choose? [here]

Now that this is all clear, you can probably insert your own joke about importance of teaching inclusion-exclusion. But I think the issue is a bit deeper than that.

I’ve been thinking about this when updating my “What is Combinatorics” quotation page (see also my old blog post on this). You can see a complete divergence of points of view on how to answer this question. Some make the definition or description to be very broad (sometimes even ridiculously broad), some relatively narrow, some are overly positive, while others are revoltingly negative. And some basically give up and say, in effect “it is what it is”. This may seem puzzling, but if you concentrate on the narrow definitions and ignore the rest, a picture emerges.

Clearly, these people are not talking about the same area. They are talking about sub-areas of Combinatorics that they know well, that they happen to learn or work on, and that they happen to like or dislike. Somebody made a choice what part of Combinatorics to teach them. They made a choice what further parts of Combinatorics to learn. These choices are increasingly country or culture dependent, and became formative in people’s mind. And they project their views of these parts of Combinatorics on the whole field.

So my point is — there is no right answer to “What is Combinatorics?“, in a sense that all these opinions are biased to some degree by personal education and experience. Combinatorics is just too broad of a category to describe. It’s a bit like asking “what is good food?” — the answers would be either broad and bland, or interesting but very culture-specific.

Courses and textbooks

How should one resolve the issue raised above? I think the answer is simple. Stop claiming that Combinatorics, or worse, Discrete Mathematics, is one subject. That’s not true and hasn’t been true for a while. I talked about this in my “Unity of Combinatorics” book review. Combinatorics is comprised of many sub-areas, see the Wikipedia article I discussed here (long ago). Just accept it.

As a consequence, you should never teach a “Combinatorics” course. Never! Especially to graduate students, but to undergraduates as well. Teach courses in any and all of these subjects: Enumerative Combinatorics, Graph Theory, Probabilistic Combinatorics, Discrete Geometry, Algebraic Combinatorics, Arithmetic Combinatorics, etc. Whether introductory or advanced versions of these courses, there is plenty of material for each such course.

Stop using these broad “a little bit about everything” combinatorics textbooks which also tend to be bulky, expensive and shallow. It just doesn’t make sense to teach both the five color theorem and the Catalan numbers (see also here) in the same course. In fact, this is a disservice to both the students and the area. Different students want to know about different aspects of Combinatorics. Thus, if you are teaching the same numbered undergraduate course every semester you can just split it into two or three, and fix different syllabi in advance. The students will sort themselves out and chose courses they are most interested in.

My own teaching

At UCLA, with the help of the Department, we split one Combinatorics course into two titled “Graph Theory” and “Enumerative Combinatorics”. They are broader, in fact, than the titles suggest — see Math 180 and Math 184 here. The former turned out to be quite a bit more popular among many applied math and non-math majors, especially those interested in CS, engineering, data science, etc., but also from social sciences. Math majors tend to know a lot of this material and flock to the latter course. I am not saying you should do the same — this is just an example of what can be done.

I remember going through a long list of undergraduate combinatorics textbooks a few years ago, and found surprisingly little choice for the enumerative/algebraic courses. Of the ones I liked, let me single out Bóna’s “Introduction to Enumerative and Analytic Combinatorics and Stanley’s “Algebraic Combinatorics“. We now use both at UCLA. There are also many good Graph Theory course textbooks of all levels, of course.

Similarly, for graduate courses, make sure you make the subject relatively narrow and clearly defined. Like a topics class, except accessible to beginning graduate students. Low entry barrier is an advantage Combinatorics has over other areas, so use it. To give examples from my own teaching, see unedited notes from my graduate courses:

Combinatorics of posets (Fall 2020)

Combinatorics and Probability on groups (Spring 2020)

Algebraic Combinatorics (Winter 2019)

Discrete and Polyhedral Geometry (Fall 2018) This is based on my book. See also videos of selected topics (in Russian).

Combinatorics of Integer Sequences (Fall 2016)

Combinatorics of Words (Fall 2014)

Tilings (Winter 2013, lecture-by-lecture refs only)

In summary

In my experience, the more specific you make the combinatorics course the more interesting it is to the students. Don’t be afraid that the course would appear be too narrow or too advanced. That’s a stigma from the past. You create a good course and the students will quickly figure it out. They do have their own FB and other chat groups, and spread the news much faster than you could imagine…

Unfortunately, there is often no good textbook to cover what you want. So you might have to work a little harder harder to scout the material from papers, monographs, etc. In the internet era this is easier than ever. In fact, many extensive lecture notes are already available on the web. Eventually, all the appropriate textbooks will be written. As I mentioned before, this is one of the very few silver linings of the pandemic…

P.S. (July 8, 2021) I should have mentioned that in addition to “a little bit about everything” textbooks, there are also “a lot about everything” doorstopper size volumes. I sort of don’t think of them as textbooks at all, more like mixtures of a reference guide, encyclopedia and teacher’s manual. Since even the thought of teaching from such books overwhelms the senses, I don’t expect them to be widely adopted.

Having said that, these voluminous textbooks can be incredibly valuable to both the students and the instructor as a source of interesting supplementary material. Let me single out an excellent recent “Combinatorial Mathematics” by Doug West written in the same clear and concise style as his earlier “Introduction to Graph Theory“. Priced modestly (for 991 pages), I recommend it as “further reading” for all combinatorics courses, even though I strongly disagree with the second sentence of the Preface, per my earlier blog post.

How to fight the university bureaucracy and survive

June 27, 2021 Leave a comment

The enormity of the university administration can instill fear. How can you possibly fight such a machine? Even if an injustice happened to you, you are just one person with no power, right? Well, I think you can. Whether you succeed in your fight is another matter. But at least you can try… In this post I will try to give you some advise on how to do this.

Note: Initially I wanted to make this blog post light and fun, but I couldn’t think of a single joke. Somehow, the subject doesn’t inspire… So read this only if it’s relevant to you. Wait for future blog posts otherwise…

Warning: Much of what I say is relevant to big state universities in the US. Some of what I say may also be relevant to other countries and university systems, I wouldn’t know.

Basics

Who am I to write about this? It is reasonable to ask if any of this is based on my personal experience of fighting university bureaucracies. The answer is yes, but I am not willing to make any public disclosures to protect privacy of all parties involved. Let me just say that over the past 20 years I had several relatively quiet and fairly minor fights with university bureaucracies some of which I won rather quickly by being right. Once, I bullied my way into victory despite being in the wrong (as I later learned), and once I won over a difficult (non-personal) political issue by being cunning and playing a really long game that took almost 3 years. I didn’t lose any, but I did refrain from fighting several times. By contrast, when I tried to fight the federal government a couple of times (on academic matters), I lost quickly and decisively. They are just too powerful….

Should you fight? Maybe. But probably not. Say, you complained to the administration about what you perceive to be an injustice to you or to someone else. Your complaint was denied. This is when you need to decide if you want to start a fight. If you do, you will spend a lot of effort and (on average) probably lose. The administrations are powerful and know what they are doing. You probably don’t, otherwise you won’t be reading this. This blog post might help you occasionally, but wouldn’t change the big picture.

Can you fight? Yes, you can. You can win by being right and convince bureaucrats to see it this way. You can win by being persistent when others give up. You can also win by being smart. Big systems have weaknesses you can exploit, see below. Use them.

Is there a downside to winning a fight? Absolutely. In the process you might lose some friends, raise some suspicions from colleagues, and invite retribution. On a positive side, big systems have very little institutional memory — your win and the resulting embarrassment to administration will be forgotten soon enough.

Is there an upside to losing a fight? Actually, yes. You might gain resect of some colleagues as someone willing to fight. In fact, people tend to want being friends/friendly with such people out of self-preservation. And if your cause is righteous, this might help your reputation in and beyond the department.

Why did I fight? Because I just couldn’t go on without a fight. The injustice, as I perceived it, was eating me alive and I had a hunch there is a nonzero chance I would win. There were some cases when I figured the chances are zero, and I don’t need the grief. There were cases when the issue was much too minor to waste my energy. I don’t regret those decision, but having grown up in this unsavory part of Moscow, I was conditioned to stand up for myself.

Is there a cost of not fighting? Yes, and it goes beyond the obvious. First, fighting bureaucracy is a skill, and every skill takes practice. I remember when tried to rent an apartment in Cambridge, MA — some real estate agents would immediately ask if I go to Harvard Law School. Apparently it’s a common practice for law students to sue their landlords, an “extra credit” homework exercise. Most of these lawsuits would quickly fail, but the legal proceeding were costly to the owners.

Second, there is a society cost. If you feel confident that your case is strong, you winning might set a precedent which could benefit many others. I wrote on this blog once how I dropped (or never really started) a fight against the NSF, even though they clearly denied me the NSF Graduate Fellowship in a discriminatory manner, or at least that’s what I continue to believe. Not fighting was the right thing to do for me personally (I would have lost, 100%), but my case was strong and the fight itself might have raised some awareness to the issue. It took the NSF almost 25 years to figure out that it’s time to drop the GREs discriminatory requirement.

Axioms

  1. If it’s not in writing it never happened.
  2. Everyone has a boss.
  3. Bureaucrats care about themselves first and foremost. Then about people in their research area, department and university, in that order. Then undergraduates. Then graduate students. You are the last person they care about.

How to proceed

Know your adversary. Remember — you are not fighting a mafia, a corrupt regime or the whole society. Don’t get angry, fearful or paranoid. Your adversary is a group of good people who are doing their jobs as well as they can. They are not infallible, but probably pretty smart and very capable when it comes to bureaucracy, so from game theory point of view you may as well assume they are perfect. When they are not, you will notice that — that’s the weakness you can exploit, but don’t expect that to happen.

Know your rights. This might seem obvious, but you would be surprised to know how many academics are not aware they have rights in a university system. In fact, it’s a feature of every large bureaucracy — it produces a lot of well meaning rules. For example, Wikipedia is a large project which survived for 20 years, so unsurprisingly it has a large set of policies enforced by an army of admins. The same is probably true about your university and your department. Search on the web for the faculty handbook, university and department bylaws, etc. If you can’t find the anywhere, email the assistant to the Department Chair and ask for one.

Go through the motions. Say, you think you were slighted. For example, your salary was not increased (enough), you didn’t get a promotion, you got too many committee duties assigned, your sabbatical was not approved, etc. Whatever it is, you are upset, I get it. Your first step is not to complain but go through the motions, and email inquiries. Email the head of the department, chair of the executive committee, your faculty dean, etc., whoever is the decision maker. Calmly ask to explain this decision. Sometimes, this was an oversight and it’s corrected with a quick apology and “thanks for bringing this up”. You win, case closed. Also, sometimes you either get a convincing explanation with which you might agree — say, the university is on salary freeze so nobody got a salary increase, see some link. Again, case closed.

But in other cases you either receive an argument with which you disagree (say, “the decision was made based on your performance in the previous year”), a non-answer (say, “I am on sabbatical” or “I will not be discussing personal matters by email”), or no answer at all. These are the cases that you need to know how to handle and all such cases are a little different. I will try to cover as much territory as possible, but surely will miss some cases.

Ask for advice. This is especially important if you are a junior mathematician and feel a little overwhelmed. Find a former department chair, perhaps professor emeritus, and have an quiet chat. Old-timers know the history of the department, who are the university administrators, what are the rules, what happened to previous complaints, what would fly and what wouldn’t, etc. They might also suggest who else you should talk to that would be knowledgeable and help dealing with an issue. With friends like these, you are in a good shape.

Scenarios

Come by for a chat. This is a standard move by a capable bureaucrat. They invite you for a quick discussion, maybe sincerely apologize for “what happened” or “if you are upset” and promise something which they may or may not intend to keep. You are supposed to leave grateful that “you are heard” and nothing is really lost from admin’s point of view. You lost.

There is only one way to counter this move. Agree to a meeting — play nice and you might learn something. Don’t record in secret — it’s against the law in most states. Don’t ask if you can record the conversation — even if the bureaucrat agrees you will hear nothing but platitudes then (like “we in our university strive to make sure everyone is happy and successful, and it is my personal goal to ensure everyone is treated fairly and with respect”). This defeats the purpose of the meeting moving you back to square one.

At the meeting do not agree with anything, never say yes or no to anything. Not even to the routine “No hard feelings?” Just nod, take careful notes, say “thank you so much for taking time to have this meeting” and “This information is very useful, I will need to think it over”. Do not sign anything. If offered a document to sign, take it with you. If implicitly threatened, as in “Right now I can offer you this for you, but once you leave this office I can’t promise… ” (this is rare but does happen occasionally), ignore the threat. Just keep repeating “Thank you so much for informing me of my options, I will need to think it over.” Go home, think it over and talk to somebody.

Get it all in writing. Within a few hours after the meeting, email to the bureaucrat an email with your notes. Start this way: “Dear X, this is to follow up on the meeting we had on [date] regarding the [issue]. I am writing this to ensure there is no misunderstanding on my part. At the meeting you [offered/suggested/claimed/threatened] …. Please let me know if this is correct and what are the details of …”

A capable bureaucrat will recognize the move and will never go on record with anything unbecoming. They will accept the out you offered and claim that you indeed misunderstood. Don’t argue with that — you have them where you want it. In lieu of the misunderstanding they will need to give a real answer to your grievance (otherwise what was the point of the meeting?) Sometimes a bureaucrat will still resort to platitudes, but now that they are in writing, that trick is harder to pull off, and it leads us to a completely different scenario (see below).

Accept the win. You might receive something like this: “We sincerely apologize for [mistake]. While nothing can be done about [past decision], we intend to [compensate or rectify] by doing…” If this is a clear unambiguous promise in writing, you might want to accept it. If not, follow up about details. Do not pursue this any further and don’t make it public. You got what you wanted, it’s over.

Accept the defeat. You might learn that administration acted by the book, exactly the way the rules/bylaws prescribe, and you were not intentionally discriminated in any way. Remain calm. Thank the bureaucrat for the “clarification”. It’s over.

Power of CC. If you receive a non-answer full of platitudes or no email reply at all (give it exactly one week), then follow up. Write politely “I am afraid I did not receive an answer to [my questions] in my email from [date]. I would really appreciate your response to [all issues I raised]. P.S. I am CC’ing this email to [your boss, boss of your boss, your assistant, your peers, other fellow bureaucrats, etc.] to let them know of [my grievance] and in case they can be helpful with this situation.” They will not “be helpful”, of course, but that’s not the point. The CC move itself has an immense power driven by bureaucrats’ self-preservation. Most likely you will get a reply within hours. Just don’t abuse the CC move — use it when you have no other moves to play, as otherwise it loses its power.

Don’t accept a draw. Sometimes a capable bureaucrat might reply to the whole list on CC and write “We are very sorry [your grievance] happened. This is extremely atypical and related to [your unusual circumstances]. While this is normally not appropriate, we are happy to make an exception in your case and [compensate you].” Translation: “it’s your own fault, you brought it on yourself, we admit no wrongdoing, but we are being very nice and will make you happy even though we really don’t have to do anything, not at all.” While other bureaucrats will recognize the move and that there is an implicit admission of fault, they will stay quiet — it’s not their fight.

Now, there is only one way to counter this, as far as I know. If you don’t follow up it’s an implicit admission of “own fault” which you don’t want as the same issue might arise again in the future. If you start explaining that it’s really bureaucrat’s fault you seem vindictive (as in “you already got what you wanted, why do you keep pushing this?”), and other bureaucrats will close ranks leaving you worse off. The only way out is to pretend to be just as illogical as the bureaucrat pretends to be. Reply to the whole CC list something like “Thank you so much for your apology and understanding of my [issue]. I am very grateful this is resolved to everyone’s satisfaction. I gratefully accept your sincere apology and your assurances this will not happen again to me nor anyone else at the department.”

A capable bureaucrat will recognize they are fighting fire with fire. In your email you sound naïve and sincere — how do you fight that? What are they going to do — reply “actually, I didn’t issue any apology as this was not my fault”? Now that seem overly defensive. And they would have to reply to the whole CC list again, which is not what they want. They are aware that everyone else knows they screwed up, so reminding everyone with a new email is not in their interest. And there is a decent chance you might reply to the whole CC list again with all that sugarcoated unpleasantness. Most likely, you won’t hear from them again, or just a personal (non-CC’d) email which you can ignore regardless of the content.

Shifting blame or responsibility. That’s another trick bureaucrats employ very successfully. You might get a reply from a bureaucrat X to the effect saying “don’t ask me, these are rules made by [people upstairs]” or “As far as I know, person Y is responsible for this all”. This is great news for you — a tacit validation of your cause and an example of a bureaucrat putting their own well-being ahead of the institution. Remember, your fight is not with X, but with the administration. Immediately forward both your grievance and the reply to Y, or to X’s boss if no names were offered, and definitely CC X “to keep your in the loop of further developments on this issue”. That immediately pushes bureaucracy into overdrive as it starts playing musical chairs in the game “whose fault is that and what can be done”.

Like with musical chairs, you might have to repeat the procedure a few times, but chances are someone will eventually accept responsibility just to stop this embarrassment from going circles. By then, there will be so many people on the CC chain, your issue will be addressed appropriately.

Help them help you. Sometimes a complaint puts the bureaucrat into a stalemate. They want to admit that injustice happened to you, but numerous university rules forbid them from acting to redress the situation. In order to violate these rules, they would have to take the case upstairs, which brings its own complications to everyone involved. Essentially you need to throw them a lifeline by suggesting some creative solution to the problem.

Say, you can write “while I realize the deadline for approval of my half-year sabbatical has passed, perhaps the department can buyout one course from my Fall schedule and postpone teaching the other until Spring.” This moves the discussion from the “apology” subject to “what can be done”, a much easier bureaucratic terrain. While the bureaucrat may not agree with your proposed solution, your willingness to deal without an apology will earn you some points and perhaps lead to a resolution favorable to all parties.

Now, don’t be constrained in creativity of when thinking up such a face saving resolution. It is a common misconception that university administrations are very slow and rigid. This is always correct “on average”, and holds for all large administrative systems where responsibility is distributed across many departments and individuals. In reality, when they want to, such large systems can turn on a dime by quickly utilizing its numerous resources (human, financial, legal, etc.) I’ve seen it in action, it’s jaw-dropping, and it takes just one high ranking person to take up the issue and make it a cause.

Making it public. You shouldn’t do that unless you already lost but keep holding a grudge (and have tenure to protect you). Even then, you probably shouldn’t do it unless you are really good at PR. Just about every time you make grievances public you lose some social points with people who will hold it against you, claim you brought it on yourself, etc. In the world of social media your voice will be drowned and your case will be either ignored or take life of its own, with facts distorted to fit a particular narrative. The administration will close ranks and refuse to comment. You might be worse off than when you started.

The only example I can give is my own combative blog post which remains by far my most widely read post. Everyone just loves watching a train wreck… Many people asked why I wrote it, since it made me a persona non grata in the whole area of mathematics. I don’t have a good answer. In fact, that area may have lost some social capital as a result of my blog post, but haven’t changed at all. Some people apologized, that’s all. There is really nothing I can do and they know it. The truth is — my upbringing was acting up again, and I just couldn’t let it go without saying “Don’t F*** with Igor Pak”.

But you can very indirectly threaten to make it public. Don’t do it unless you are at an endgame dealing with a high ranking administrator and things are not looking good for you. Low level university bureaucrats are not really afraid for their jobs. For example, head of the department might not even want to occupy the position, and is fully protected by tenure anyway. But deans, provosts, etc. are often fully vested into their positions which come with substantial salary hike. If you have a sympathetic case, they wouldn’t want to be featured in a college newspaper as denying you some benefits, regardless of the merit. They wouldn’t be bullied into submission either, so some finesse is needed.

In this case I recommend you find an email of some student editor of a local university newspaper. In your reply to the high ranking administrator write something like “Yes, I understand the university position in regard to this issue. However, perhaps [creative solution]”. Then quietly insert the editor’s email into CC. In the reply, the administrator will delete the email from CC “for privacy reasons”, but will google to find out who is being CC’ed. Unable to gauge the extend of newspaper’s interest in the story, the administrator might chose to hedge and help you by throwing money at you or mollifying you in some creative way you proposed. Win–win.

Final word

I am confident there will be people on all sides who disagree collectively with just about every sentence I wrote. Remember — this blog post is a not a recommendation to do anything. It’s just my personal point of view on these delicate matters which tend to go undiscussed, leaving many postdocs and junior faculty facing alone their grievances. If you know a good guide on how to deal with these issues (beyond Rota’s advice), please post a link in the comments. Good luck everyone! Hope you will never have to deal with any of that!

What math stories to tell and not to tell?

February 8, 2021 3 comments

Storytelling can be surprisingly powerful. When a story is skillfully told, you get an almost magical feeling of being a part of it, making you care deeply about protagonists. Even if under ordinary circumstances you have zero empathy for the Civil War era outlaws or emperor penguins of Antarctica, you suddenly may find yourself engrossed with their fortune. This is a difficult skill to master, but the effects are visible even when used in earnest by the beginners.

Recently I started thinking about the kind of stories mathematicians should be telling. This was triggered by Angela Gibney‘s kind invitation to contribute an article on math writing to the Early Career Collection in the Notices of the AMS. So I looked at a few older articles and found them just wonderful. I am not the target audience for some of them, but I just kept reading them all one after another until I exhausted the whole collection.

My general advice — read the collection! Read a few pieces by some famous people or some people you know. If you like them, keep on reading. As I wrote in this blog post, you rarely get an insight into mathematician’s thinking unless they happen to write an autobiography or gave an interview. While this is more of a “how to” genre, most pieces are written in the first person narrative and do tell some interesting stories or have some curious points of view.

It is possible I am the last person to find out about the collection. I am not a member of the AMS, I don’t read the Notices, and it’s been a long time since anyone considered me “early career”. I found a few articles a little self-centered (but who am I to judge), and I would quibble with some advice (see below). But even those articles I found compelling and thought-provoking.

Having read the collection, I decided to write about mathematical storytelling. This is not something that comes naturally to most people in the field. Math stories (as opposed to stories about mathematicians) tend to be rather dry and unexciting, especially in the early years of studying. I will blog my own article some other time, but for now let me address the question in the title.

Stories to tell

With a few notable exceptions, just about all stories are worth telling. Whether in your autobiography or in your personal blog, as long as they are interesting to somebody — it’s all good. Given the lack of good stories, or any math stories really, it’s a good bet somebody will find your stories interesting. Let me expound on that.

Basically, anything personal works. To give examples from the collection, see e.g. stories by Mark Andrea de Cataldo, Alicia Prieto-Langarica, Terry Tao and John Urschel. Most autobiographies are written in this style, but a short blog post is also great. Overcoming an embarrassment caused by such public disclosure can be difficult, which makes it even more valuable to the readers.

Anything historical works, from full length monographs on history of math to short point of view pieces. Niche and off the beaten path stories are especially valuable. I personally like the classical History of Mathematical Notations by Florian Cajori, and Combinatorics: Ancient & Modern, a nice collection edited by Robin Wilson and John Watkins, with a several articles authored by names you will recognize. Note that an oral history can be also very valuable, see the kind of stories discussed by László Lovász and Endre Szemerédi mentioned in this blog post and Dynkin’s interviews I discussed here.

Anything juicy works. I mean, if you have a story of some famous mathematician doing something unusual (good or bad, or just plain weird), that attracts attention. This was the style of Steven Krantz’s two Math Apocryphia books, with many revealing and embarrassing anecdotes giving a sense of the bygone era.

Anything inspirational works. A beautiful example of this style is Francis Su’s Farewell Address as MAA President and part of his moving follow up book (the book has other interesting material as well). From the collection, let me single out Finding Your Reward by Skip Garibaldi which also aims to inspire. Yet another example is Bill Thurston‘s must read MO answer “What’s a mathematician to do?

Any off the beaten path math style is great. Think of “The Strong Law of Small Numbers” by Richard Guy, or many conjectures Terry Tao discusses in his blog. Think of “Missed opportunities” by Freeman Dyson, “Tilings of space by knotted tiles” by Colin Adams, or “One sentence proof… ” by Don Zagier (see also a short discussion here) — these are all remarkable and memorable pieces of writing that don’t conform to the usual peer review paradigm.

Finally, anything philosophical or metamathematical finds an audience. I am thinking of “Is it plausible?” by Barry Mazur, “Theorems for a Price” by Doron Zeilberger, “You and Your Research” by Richard Hamming, “Mathematics as Metaphor” by Yuri Manin, or even “Prime Numbers and the Search for Extraterrestrial Intelligence” by Carl Pomerance. We are all in search of some kind of answers, I suppose, so reading others thinking aloud about these deep questions always helps.

Practice makes perfect

Before I move to the other side, here is a simple advice on how to write a good story. Write as much as possible! There is no way around this. Absolutely no substitute, really. I’ve given this advice plenty of times, and so have everyone else. Let me conclude by this quote by Don Knuth which is a bit similar to Robert Lazarsfeld‘s advice. It makes my point much better and with with more authority that I can ever provide:

Of equal importance to solving a problem is the communication of that solution to others. The best way to improve your writing skills is to practice, practice, practice.

Seize every opportunity to write mini-essays about the theoretical work you are doing. Compose a blog for your friends, or even for yourself. When you write programs, write literate programs.

One of the best strategies to follow while doing PhD research is to prepare weekly reports of exactly what you are doing. What questions did you pursue that week? What positive answers did you get? What negative answers did you get? What are the major stumbling blocks that seem to be present at the moment? What related work are you reading?

Donald Knuth – On Writing up Research (posted by Omer Reingold), Theory Dish, Feb 26, 2018

Don’t be a journalist

In this interesting article in the same collection, Jordan Ellenberg writes:

Why don’t journalists talk about math as it really is? Because they don’t know how it really is. We do. And if we want the public discourse about math to be richer, broader, and deeper, we need to tell our own stories.

He goes on to suggest that one should start writing a blog and then pitch some articles to real newspapers and news magazines. He gives his own bio as one example (among others) of pitching and publishing in mainstream publications such as Slate and the New York Times. Obviously, I agree with the first (blog) part (duh!), but I am rather negative on the second part. I know, I know, this sounds discouraging, but hear me out.

First, what Jordan is not telling you is how hard he had to work on his craft before getting to the point of being acceptable to the general audience. This started with him getting Summa Cum Laude A.B. degree from Harvard in both Math and English (if I recall correctly), and then publishing a well-received novel, all before starting his regular Slate column. Very few math people have this kind of background on which they can build popular appeal.

Second, this takes away jobs from real journalists. Like every highly competitive intellectual profession, journalism requires years of study and practice. It has its own principles and traditions, graduate schools, etc. Call it a chutzpah or a Dunning–Kruger effect, but just because you are excellent in harmonic analysis doesn’t mean you can do even a mediocre job as a writer. Again — some people can do both, but most cannot. If anything, I suspect a negative correlation between math and writing skills.

Here is another way to think about this. Most people do realize that they don’t need to email their pretty iPhone pictures of a Machu Picchu sunrise to be published by the National Geographic. Or that their cobbler family recipe maybe not exactly be what Gourmet Magazine is looking for. Why would you think that writing is much easier then?

Third, this cheapens our profession to some degree. You really don’t need a Ph.D. in algebraic number theory and two perfect scores at the IMO to write about Powerball or baseball. You need a M.S. in statistics and really good writing skills. There are plenty of media sites which do that now, such as 538. There is even the whole DDJ specialization with many practitioners and a handful of Pulitzer prizes. Using quantitative methods is now mainstream, so what exactly are you bringing to the table?

Fourth, it helps to be honest. Jordan writes: “Editors like an angle. If there’s a math angle to a story in the news, pitch it! As someone with a degree in math, you have something to offer that most writers don’t.” This is true in the rare instances when, say, a Fields medal in your area is awarded, or something like that. But if it’s in an area far away from yours, then, uhm, you got nothing over many thousands of other people.

Now, please don’t take this as “don’t comment on current affairs” advice. No, no — please do! Comment away on your blog or on your podcast. Just don’t take jobs away from journalists. Help them instead! Write them emails, correct their mistakes. Let them interview you as an “expert”, whatever. Part of the reason the math related articles are so poor is because of mathematicians’ apathy and frequent disdain to the media, not because we don’t write newspaper articles — it’s really not our job.

Let me conclude with an anecdote about me reaching out to a newspaper. Once upon a time, long ago, flights used to distribute real newspapers to the passengers. I was sitting in the back and got a Wall Street Journal which I read out of boredom during takeoff. There was an article discussing the EU expansion and the fact that by some EU rules, the headquarters need a translator from every language to every other language. The article predicted dark days ahead, since it’s basically impossible to find people who can translate some smaller languages, such as from Maltese to Lithuanian. The article provided a helpful graph showing the number of translators needed as a function of the number of countries and claimed the exponential growth.

I was not amused, cut out the article, and emailed the author upon arrival, saying that with all my authority as an assistant professor at MIT, I promise that n(n-1) grows polynomially, not exponentially. I got back a surprisingly apologetic reply. The author confessed he was a math major in college, but was using the word without thinking. I don’t know if WSJ ever published a correction, but I bet the author will not be using this word so casually anymore, and if he ever advanced to the editorial position will propagate this knowledge to others. So there — that’s my personal contribution to improving public discourse…

Don’t be an apologist

In another beautifully written article in the Early Career collection, Izzet Coskun gives “advice on how to communicate mathematics quickly in informal settings”. He writes:

Whether before a promotion committee, at a party where one might meet future politicians or future parents of future colleagues, in the elevator on the way up to tea, or in the dean’s office at a job interview, we often have the opportunity to explain our work to a general audience. The time we have is usually short [..] Our audience will not be familiar with our terminology. Communicating mathematics in such settings is challenging.

He then gives a lot of very useful practical advice on how to prepare to such “math under a minute” conversation, how to be engaging, accessible, etc. It’s an all around good advice. However, I disagree. Here is my simple advice: Don’t Do It! If it’s a dean and this is a job interview, feel free to use any math jargon you want — it’s not your fault your field is technical, and the dean of sciences is used to it anyway. Otherwise, just say NO.

It’s true that sometimes your audience is friendly and is sincere in their interest in your work. In that case no matter what you say will disappoint them. There is a really good chance they can’t understand a word of what you say. They just think they can, and you are about to disillusion them.

But more often than not, the audience is actually not friendly, as was the case of a party Izzet described in his article. Many people harbor either a low regard or an outright resentment towards math stemming from their school years or some kind of “life experience”. These folks simply want to reinforce their views, and no matter what you say that will be taken as “you see, math is both hard, boring and useless”.

One should not confuse the unfriendlies with stupid or uneducated people. On the contrary, a lot of educated people think this way. A prime example is Amy Wax with her inimitable quote:

If we got rid of ninety percent of the math Ph.D. programs, would we really be worse off in any material respect?  I think that’s a serious question.

I discussed this quote at length in this blog post. There, I tried to answer her question. But after a few back-and-force emails (which I didn’t make public), it became clear that she is completely uninterested in the actual learning of what math is and what it does. She just wants to have her own answer validated by some area practitioners. Oh, well…

So here is the real reason why I think answering such people is pointless. No matter what you say, you come across as an apologist for the field. If people really want to understand what math is for, there are plenty of sources. In fact, have several bookshelves with extremely well written book-length answers. But it’s not your job to educate them! Worse, it is completely unreasonable to expect you to answer in “under one minute”.

Think about reactions of people when they meet other professionals. Someone says “I develop new DNA based cancer treatments” or “I work on improving VLSI architecture”, or “I device new option pricing strategies”. Is there a follow up request to explain it in “under one minute”? Not really. Let me give you a multiple choice. Is that because people think that:

a) these professions are boring compared to math and they would rather hear about the latter?

b) they know exactly what these professionals do, but math is so darn mysterious?

c) they know these professions are technical and hard to understand, but even children can understand math, so how hard can that be?

d) these professions are clearly useful, but what do math people do — solve quadratic equations all day?

If you answered a) or b) you have more faith in humanity than I do. If you answered c) you never spoke to anyone about math at a party. So d) is the only acceptable answer, even if it’s an exaggeration. Some people (mostly under 7) think that I “add numbers all day”, some people (mostly in social sciences) think that I “take derivatives all day”, etc., you get the point. My advice — don’t correct them. This makes them unhappy. Doesn’t matter if they are 7 or 77 — when you correct them the unhappiness is real and visible…

So here is a summary of how I deal with such questions. If people ask what I do, I answer “I do math research and I teach“. If they ask what kind of research I say “advanced math“. If they ask for details I tell them “it’s complicated“. If they ask why, I tell them “because it takes many years of study to even understand the math lingo, so if I tell you what I do this sounds like I am speaking a foreign language“.

If they ask what are the applications of my research (and they always do), I tell them “teaching graduate classes“. If they ask for “practical” applications, whatever that means, I tell them “this puts money into my Wells Fargo account“. At this point they move on exhausted by the questions. On the one hand I didn’t lie except in the last answer. On the other — nobody cares if I even have a WF account (I don’t, but it’s none of their business either).

One can ask — why do I care so much? What’s so special about my work that I am so apprehensive? In truth, nothing really. There are other aspects of my identity I also find difficult discussing in public. The most relevant is “What is Combinatorics?” which for some reason is asked over and over as if there is a good answer (see this blog post for my own answer and this Wikipedia article I wrote). When I hear people explaining what it is, half the time it sounds like they are apologizing for something they didn’t do…

There are other questions relevant to my complex identity that I am completely uninterested in discussing. Like “What do you think of the Russian President?” or “Who is a Jew?“, or “Are you a Zionist?” It’s not that my answers are somehow novel, interesting or controversial (they are not). It’s more like I am afraid to hear responses from the people who asked me these questions. More often than not I find their answers unfortunate or plain offensive, and I would rather not know that.

Let me conclude on a positive note, by telling a party story of my own. Once, during hors d’oeuvres (remember those?), one lady, a well known LA lawyer, walked to me and said: “I hear you are a math professor at UCLA. This is so fascinating! Can you tell me what you do? Just WOW me!” I politely declined along the lines above. She insisted: “There has to be something that I can understand!” I relented: “Ok, there is one theorem I can tell you. In fact, this result landed me a tenure.” She was all ears.

I continued: “Do you know what’s a square-root-of-two?” She nodded. “Well, I proved that this number can never be a ratio of two integers, for example it’s not equal to 17/12 or anything like that.” “Oh, shut-the-F-up!” she exclaimed. “Are you serious? You can prove that?” — she was clearly suspicious. “Yes, I can“, I confirmed vigorously, “in fact, two Russian newspapers even printed headlines about that back a few years ago. We love math over there, you know.”

But of course!“, she said, “American media never writes about math. It’s such a shame! That’s why I never heard of your work. My son is much too young for this, but I must tell my nieces — they love science!” I nodded approvingly. She drifted away very happy, holding a small plate of meat stuffed potato croquettes, enriched with this newly acquired knowledge. I do hope her nieces liked that theorem — it is cool indeed. And the proof is so super neat…

Britannica, Wikipedia and Combinatorics

March 16, 2012 1 comment

All right, as we just learned, Britannica is done publishing.  Wikipedia won.  It wasn’t much of a contest, really.  We all expected this a long time ago.  Even if WP wasn’t as big as it is now (English language WP has about 4 mil pages), looking up there is noticeably faster than figuring out which volume of Britannica has your information.  So should we celebrate or commiserate?  I think neither, but we should instead turn this crisis into an opportunity.

First, how to think of the Britannica?  I say, as a series of historical documents, written by some of the best writers and scientists.  The case in point: Combinatorics article, which exists both in WP and in Britannica (the webpage has a free access this month).  Let’s review:

1) The Britannica Combinatorics article is overly long and incomplete at the same time, somewhat biased, very out of date, and barely coherent.  Lots of little examples are mentioned (multinomial coefficients, PBIB, etc.) and a few big things (graph theory, Ramsey theory, combinatorical geometry).  Nothing remotely recent (like algebraic combinatorics), most references from the 1960s and a couple of 1980s textbooks which are “accessible to laymen” (a lovely turn of phrase).  Sort of reminds me of this bridge – nice, useful in the past, but ultimately useless nowdays.

2) The Wikipedia Combinatorics article was in a horrible shape only about 3 years ago.  As a big WP fan, I was upset over this, and over the 1998 winter break largely rewrote the page myself.  The current version is still about 95% the same as I made it.  Rather than give silly examples and historical discussions, I simply made it into a portal with wikilinks to relevant subfields and few sentences describing each.  I thought I would get back to the article and write some more, but never did.  Sorry!

So, what gives?  Neither version is really a winner.  The Britannica article is outdated.  The WP article by itself has very little information.  The real difference can be seen only by going along the links – the total scope and quality of WP articles in combinatorics is noticeably better.  Still, some areas have WP pages which are not well written and/or have little information.  In summary, neither article gives a picture of the field.  If I were to choose a well written and accessible Combinatorics encyclopedia article, I would suggest Enumerative and Algebraic Combinatorics by Zeilberger, Extremal and Probabilistic Combinatorics by Alon and Krivelevich, and other articles from The Princeton Companion in Mathematics (Ed. by Tim Gowers).   

On the other hand, if viewed as a historical document Britannica article has a number of hidden treasures.  Written (at least in part) by Grünbaum (I am guessing in the 1960s), it correctly predicts the future growth of the extremal cominatorics and discrete geometry.  It is off base when it come to some other areas, like Polya’s theory which is rarely taught now and viewed as old fashioned.  Still, the page gives a window into the 1960 (or 1980?) thinking of what combinatorics is about.  In fact, even the name of the article was different – until recently it was “Combinatorial Analysis”.

My favorite “hidden gem” is the section on Partition Theory.  Check out theorem (F1) there, which has both the statement and the proof (!).  This is common for WP (see e.g. this page), but rather unique for the Britannica.  It so happens, this section was originally written by Percy MacMahon in the 1911 Britannica (which is out of copyright now).  His version was up to date and beautifully written, later corrupted and shortened but never completely disappeared.  In fact, compared to 1911, new mistakes were introduced, e.g. an unpleasant typo in the section title “The Ferrer diagram” which I noticed in the 1960 edition managed to survive all these decades (they are named after Norman Ferrers).

Finally, my modest suggestion.  Treat the Britannica as a historical treasure that is up for sale (not unlike this one, sold in 1998).  After all, it dates back to 1768, three times older than this “Historic Cultural Monument” in my neighborhood.  The Britannica currently sells its digital version, but I bet this line of income will also dry up.  We (the people) should simply buy the whole thing and make it free and publicly available on the web.  Make sure to have available on the web all editions, not just the latest one.  This would give an instant window of how the same subject was treated over time.  Perhaps UNESCO?  Google?  Microsoft?  (it’s better than your Encarta, really!)  Amazon?  NSF?  Anyone with money?  I bet it’s cheap…

P.S.  A side comment – I want to praise Harald Helfgott’s recent serious effort to overhaul the Number Theory WP article.